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ABSTRACT
3D information of real-world scenes provides important clues for
many computer vision tasks. We present a simple but effective slid-
ing camera system as well as a corresponding stereo reconstruction
framework to retrieve 3D information of static scenes. By fusing
geometric properties of the sliding camera system, our reconstruc-
tion algorithm achieves higher accuracy than conventional methods
in quantitative experiments. Besides, the practicality of our system
is validated on real world scenes.

Index Terms— multiple baseline stereo, sliding camera, con-
strained bundle adjustment, variational depth estimation

1. INTRODUCTION

Image-based multi-view stereo reconstruction is an important re-
search area of computer vision. According to the different kinds
of multi-view source, there are roughly three categories: 1) images
are captured by specialized camera arrays (e.g, Yang et al. [1]); 2) all
images are unordered and discontinuous (e.g, Snavely et al. [2]); 3)
images are captured by one or several moving camera (e.g, Pollefeys
et al. [3], Zhang et al. [4], Pradeep et al. [5]). For the first category,
since there is no need to estimate camera poses on the fly, camera
arrays are able to adapt complex scenes, but are often expensive and
cumbersome. For the second category, it is often hard to find out cor-
rect camera poses which is required by later stereo algorithms, espe-
cially in complex scenes. The third category is a trade-off, where
cameras are partially constrained by continuity that facilitates pose
estimation, and this property make it much more practical. However,
in some complex circumstances (e.g., with a lot of noises or with few
feature points), the constraint of continuity is not sufficient.

In this paper, a sliding camera system (Fig. 1) is used to over-
come the shortcomings of freely moving setups. We propose a dense
stereo reconstruction framework (Fig. 2) which utilize not only the
continuity of camera but also geometric properties of the slider. Un-
like freely moving setups, the slider provides a strong constraint
which greatly facilitates camera pose estimation. It should be no-
ticed that sliding camera has also been used in [6, 7], but for target
tracking and synthetic aperture imaging; dense stereo reconstruction
is not involved in these works. The contribution of this paper is
twofold:

1. We analyze geometric properties of a sliding camera, and pro-
pose a constrained camera model for camera pose estimation;

2. By merging cross-ratio property, we propose a variational
framework for depth estimation.

The remainder of this paper is organized as follows: Section 2
reviews related work; Section 3 describes our constrained camera
pose estimation algorithm, while Section 4 describes our variational
depth estimation algorithm. Experiments and evaluations are shown
in Section 5, and Section 6 is summary and prospect of this paper.

Fig. 1. The sliding camera system, in which a single camera on the
track is controlled by a stepping motor.

2. RELATED WORK

As described in Section 1, moving camera based algorithms for 3D
reconstruction is more practical than the other two categories. In re-
cent decade, a series of methods were proposed [8, 9, 4] for restoring
depth maps from image sequences captured by a freely moving cam-
era. Especially, the state-of-the-art method [4] restores high quality
depth maps using a hybrid framework, in which loopy belief propa-
gation (LBP) algorithm [10] for solving Markov random field (MRF)
is used. But without the geometric constraints provided by the slider,
their precision is heavily degraded by camera pose estimation errors.

Besides, sliding camera setup is also used in [6, 7], but for differ-
ent purpose: Nakabo et al. [6] installs two PTZ cameras on the same
slider track, and localize a dynamic target in real-time by scheduling
two cameras. Zhang et al. [7] proposes a sliding camera based al-
gorithm for synthetic aperture imaging. These works do not involve
dense stereo reconstruction.

3. CAMERA POSE ESTIMATION

As described in Section 1, in our system the camera is mounted to
a straight track, which guarantees the camera will move straightly
and parallelly. When moving along the track, the camera captures a
series of images {I1, I2, . . . , In}, and our task is to calculate one
(or more) view dependent depth map Dk, k ∈ {1, 2, . . . , n} from
these images. For a static scene, this setup is equivalent to a linear
array with a large number of cameras, so we formulate our system
as a linear camera array in this paper.

Trajectories of feature points are first extracted using KLT
tracker [11], which is essential for camera pose estimation. Dif-
ferent trajectories represent different potential 3D points and their
observations. Because the cameras are co-linear, we could find a co-
ordinate system so that optical centers of all cameras are on X-axis,
and the one of the first camera is the origin (Fig. 3). Thus, the opti-
cal centers of cameras could be denoted as O1 = (c1, 0, 0), O2 =
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Fig. 2. Flowchart of the proposed depth estimation system: 1) Cam-
era poses are first estimated from feature point trajectories under the
constraint of linear translation. 2) Coarse depth map for the refer-
ence view is calculated from a narrow-baseline pair; then refined
depth map is obtained using information from all views.

(c2, 0, 0), . . . , On = (cn, 0, 0), where c1 = 0. On the other hand,
the cameras share the same rotation matrix R since they are parallel.
Therefore, we propose the following constrained bundle adjustment
model to solve camera poses:

min
R,c1,...,cn

X(1),...,X(m)

 ∑
1≤k≤n
1≤l≤m

δ
(l)
k

∥∥x(l)
k − Pk

(
X(l))∥∥2

2

 , (1)

where Pk projects a 3D point X(l) to a 2D image coordinate on
camera k using projection matrix Pk = KR

[
I
∣∣−Ok

]
, and δ

(l)
k is

visibilities of corresponding projections.

4. DEPTH ESTIMATION

In this section, we describe how we embed a specific geometric prop-
erty into a variational optimization for depth estimation. First of all,
we introduce the cross-ratio property of the sliding camera system.

4.1. Cross-Ratio Property

As illustrated in Fig. 4, by stacking all images in Fig. 3 together,
the projections of the same 3D point are co-linear, and all projection
lines intersect at the same place e. Actually, e is the motion van-
ishing point of all feature points, and its homogeneous coordinate
is e = KR[ 1, 0, 0 ]T (the projection of X-axis). Using cross-ratio

Fig. 3. Geometry relationship between cameras which are con-
strained by the slider.

Fig. 4. After stacking all captured images together, the projections
of the same 3D point are co-linear with e.

invariant property in perspective geometry [12, 13], the following
equation holds true:(

#   »exj ·
#         »

d(xk)
)(

#      »xixk ·
#         »

d(xk)
)

(
#   »exi ·

#         »

d(xk)
)(

#       »xjxk ·
#         »

d(xk)
) =

#         »
OiOk · #»

D
#         »
OjOk · #»

D
, (2)

where xi, xj , xk are the projections of the same 3D point on image
Ii, Ij , Ik, and

#         »

d(xk) =
#    »exk∣∣exk

∣∣ .

Since
#         »
OiOk ·

#»
D = ck−ci,

#         »
OjOk ·

#»
D = ck−cj , #   »exj = #    »exk+

#       »xkxj

and #    »exk ·
#         »

d(xk) =
∣∣exk

∣∣, the equation above can be rewritten as

#       »xkxj ·
#         »

d(xk) =

(
cj − ck

)∣∣exk

∣∣( #      »xkxi ·
#         »

d(xk)
)

(
ci − ck

)∣∣exk

∣∣+ (
ci − cj

)(
#      »xkxi ·

#         »

d(xk)
) . (3)

It is worth to figure out that Equation (3) always holds true with or
without intrinsic calibration, or even when e is at infinity. So it can
be conveniently applied to image coordinate transformations.

This property provides an important geometric rule for finding
correspond 2D coordinates, which is essential for the later multi-
view stereo.

4.2. Depth Initialization

Thanks to the continuity of the slider, we can find a view i which is
near to the reference view k. They constitute a narrow-baseline pair,
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Fig. 5. Tki→kj encodes the cross-ratio property of our system, which
transforms coordinates between different view pairs. ωki(xk) is the
disparity of xk between view k and view i, so as ωkj(xk).

between which it is much easier to find out pixel correspondences.
This makes it feasible to solve our task by continuous variational
methods [14, 15], which is much more accurate than MRF methods
[16, 10].

It is a two-view stereo problem for view k and view i, and we use
the following variational optimization model to get a initial coarse
result:

min
ωki

ED(ωki) + γES(ωki). (4)

In this optimization, ωki is a function mapping a coordinate xk ∈ Ω
to the tangential disparity along the epipolar line (as illustrated in
Fig. 5) between view k and view i. ED is the data term for measuring
pixel variance, which is defined as

ED(ωki) =

∫
Ω

c(xk)Ψ
(∥∥Ik

(
xk

)
− Ii

(
xk + ωki(xk) ·

#         »

d(xk)
)∥∥2

2

)
dxk, (5)

where Ik and Ii are 3-channel RGB images, and
#         »

d(xk) (as illus-
trated in Fig. 5) is previously defined in Equation (2). Ψ(x2) =√
x2 + ε2 is a robust energy function, and a confidence factor is de-

fined as

c(xk) = 1− σ2
c∥∥∇Ik(xk)
∥∥2

2
+ σ2

c

.

ES is the smoothing term, defined as

ES(ωki) =

∫
Ω

ξk(xk)Ψ
(∥∥∇ωki(xk)

∥∥2

2

)
dxk, (6)

where ξk is the edge prior to preserve discontinuities:

ξk(xk) =

{
0.1 if

∥∥∇Ik(xk)
∥∥
2
> σc,

1 otherwise.

Optimization (4) can be solved by the methods in [14, 15]: With
an all-zero initial solution, the result converges gradually along a fine
pyramid of step 0.9, and each step is solved by the fixed point itera-
tion. After this initialization phase, a coarse depth map is available
for further processing.

4.3. Depth Refinement

To exploit informations from all views, we adjust Optimization (4)
to

min
ωki

Eall
D(ωki) + γES(ωki), (7)

where Eall
D is a new data term defined as

Eall
D(ωki) =

∫
Ω

c(xk)
∑
j ̸=k

Ψ
(∥∥Ik

(
xk

)
− Ij

(
xk + Tki→kj(ωki)(xk) ·

#         »

d(xk)
)∥∥2

2

)
dxk. (8)

Here Tki→kj is a functional constructed according to Equation (3):

Tki→kj : (Ω → R) → (Ω → R)
ωki 7→ ωkj

,

ωkj(xk) =

(
cj − ck

)∣∣exk

∣∣ωki(xk)(
ci − ck

)∣∣exk

∣∣+ (
ci − cj

)
ωki(xk)

.
(9)

As illustrated in Fig. 5, Tki→kj encodes the cross-ratio property
which conveniently transforms coordinates between different views.
With the help of Tki→kj , Optimization (7) gracefully integrates in-
formation from all available images captured by our system. It can
also be solved by fixed-point iteration, and converges from the initial
solution.

5. EXPERIMENTS

To quantitatively evaluate the accuracy of our algorithm, we built a
data set with Blender1, a free and open-source software which ren-
ders 3D scene models into 2D images with depth maps. The data
set contains three image sequences – the “Shelf”, the “Kitchen” and
the “Lobby”. The “Shelf” is an ill-posed case and the most diffi-
cult one. The “Kitchen” contains lots of depth discontinuities. The
“Lobby” contains large proportion of plane areas. Using the ground-
truth depth maps generated by Blender, we get quantitative errors of
reconstruction results, and comparison results is shown in Fig. 6 (a)
and Fig. 7. Our algorithm achieves the highest accuracy in all three
sequences.

To further verify the practicality of our algorithm, we tested it
with real scenes captured by our sliding camera system, and the re-
sults are shown in Fig. 6 (b). Although there are no ground truth for
quantitative evaluation, the fidelity of the rendered point clouds is
satisfactory.

6. CONCLUSIONS

In this paper, we propose a dense stereo reconstruction framework
for a sliding camera system. By encoding the inherent geometric
properties of the sliding camera system into both camera pose esti-
mation and variational depth optimization, our algorithm produces
more accurate results than conventional algorithms.

Right now our system and algorithm works for static scenes
only. We will work on extending our algorithm to handle simple
dynamic scenes in the future.
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Fig. 6. (a) Results on the synthetic data set. Odd rows show the ground truth depth maps and those obtained by three different methods, while
even rows show corresponding captured images and error maps of three different methods with respect to the ground truth. Darker areas in
error maps mean larger errors. (b) Results of real-world scenes. Captured image, restored depth map and rendered point clouds (with two
different coloring setups) are shown here.
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Fig. 7. Statistical comparison between different depth estimation methods on the synthetic data set. Our algorithm achieves higher accuracy
than conventional methods.
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